Перейти к основному содержимому

Быстрый старт для dbt Cloud и Amazon Athena

Обновлен
Amazon
Athena
dbt Cloud
Quickstart
Beginner
Menu

    Введение

    В этом руководстве по быстрому старту вы узнаете, как использовать dbt Cloud с Amazon Athena. Оно покажет вам, как:

    • Создать S3 bucket для результатов запросов Athena.
    • Создать базу данных Athena.
    • Получить доступ к образцам данных в общедоступном наборе данных.
    • Подключить dbt Cloud к Amazon Athena.
    • Взять пример запроса и превратить его в модель в вашем проекте dbt. Модель в dbt — это оператор select.
    • Добавить тесты к вашим моделям.
    • Документировать ваши модели.
    • Запланировать выполнение задания.
    Видео для вас

    Вы можете бесплатно ознакомиться с Основами dbt, если вас интересует обучение с видео.

    Предварительные требования

    Связанные материалы

    Начало работы

    Для следующего руководства вы можете использовать существующий S3 bucket или создать новый.

    Скачайте следующие CSV файлы (образцы данных Jaffle Shop) и загрузите их в ваш S3 bucket:

    Настройка Amazon Athena

    1. Войдите в свой аккаунт AWS и перейдите в консоль Athena.
      • Если вы впервые в консоли Athena (в вашем текущем регионе AWS), нажмите Explore the query editor, чтобы открыть редактор запросов. В противном случае Athena автоматически откроется в редакторе запросов.
    2. Откройте Settings и найдите поле Location of query result box.
      1. Введите путь к S3 bucket (добавьте префикс s3://).
      2. Перейдите в Browse S3, выберите созданный вами S3 bucket и нажмите Choose.
    3. Сохраните эти настройки.
    4. В редакторе запросов создайте базу данных, выполнив create database YOUR_DATABASE_NAME.
    5. Чтобы сделать созданную вами базу данных той, в которую вы будете записывать, выберите ее из списка Database в левом меню.
    6. Получите доступ к данным Jaffle Shop в S3 bucket, используя один из следующих вариантов:
      1. Создайте таблицы вручную.
      2. Создайте glue crawler для воссоздания данных как внешних таблиц (рекомендуется).
    7. После создания таблиц вы сможете выполнять SELECT из них.

    Настройка доступа к Athena

    Чтобы настроить доступ к Athena, определите, какой метод доступа вы хотите использовать:

    • Получите aws_access_key_id и aws_secret_access_key (рекомендуется)
    • Получите файл AWS credentials.

    AWS access key (рекомендуется)

    Чтобы получить aws_access_key_id и aws_secret_access_key:

    1. Откройте AWS Console.
    2. Нажмите на свое имя пользователя в правом верхнем углу и выберите Security Credentials.
    3. Нажмите на Users в боковой панели.
    4. Нажмите на свое имя пользователя (или имя пользователя, для которого вы хотите создать ключ).
    5. Нажмите на вкладку Security Credentials.
    6. Нажмите Create Access Key.
    7. Нажмите Show User Security Credentials и

    Сохраните aws_access_key_id и aws_secret_access_key для следующего шага.

    Файл AWS credentials

    Чтобы получить файл AWS credentials:

    1. Следуйте инструкциям по настройке файла credentials с использованием AWS CLI
    2. Найдите файл ~/.aws/credentials на вашем компьютере
      1. Windows: %USERPROFILE%\.aws\credentials
      2. Mac/Linux: ~/.aws/credentials

    Извлеките aws_access_key_id и aws_secret_access_key из файла ~/.aws/credentials для следующего шага.

    Настройка подключения в dbt Cloud

    Чтобы настроить подключение Athena в dbt Cloud:

    1. Нажмите на имя вашего аккаунта в левом меню и выберите Account settings.
    2. Нажмите Connections и выберите New connection.
    3. Нажмите Athena и заполните обязательные поля (и любые дополнительные поля).
      1. AWS region name — Регион AWS вашей среды.
      2. Database (catalog) — Введите имя базы данных, созданной на предыдущих шагах (только строчными буквами).
      3. AWS S3 staging directory — Введите S3 bucket, созданный на предыдущих шагах.
    4. Нажмите Save

    Настройка вашей среды

    Чтобы настроить учетные данные Athena в вашей среде:

    1. Нажмите Deploy в левом меню и выберите Environments.
    2. Нажмите Create environment и заполните General settings.
      • Ваша версия dbt должна быть установлена на Versionless, чтобы использовать подключение Athena.
    3. Выберите подключение Athena из выпадающего списка Connection.
    4. Заполните aws_access_key и aws_access_id, записанные на предыдущих шагах, а также Schema, в который будет производиться запись.
    5. Нажмите Test connection и после успешного теста Save среду.

    Повторите процесс для создания среды разработки.

    Настройка управляемого репозитория dbt Cloud

    Когда вы разрабатываете в dbt Cloud, вы можете использовать Git для управления версиями вашего кода.

    Чтобы подключиться к репозиторию, вы можете либо настроить размещаемый в dbt Cloud управляемый репозиторий, либо напрямую подключиться к поддерживаемому git-провайдеру. Управляемые репозитории — отличный способ попробовать dbt без необходимости создавать новый репозиторий. В долгосрочной перспективе лучше подключиться к поддерживаемому git-провайдеру, чтобы использовать такие функции, как автоматизация и непрерывная интеграция.

    Чтобы настроить управляемый репозиторий:

    1. В разделе "Настроить репозиторий" выберите Управляемый.
    2. Введите имя для вашего репозитория, например, bbaggins-dbt-quickstart.
    3. Нажмите Создать. Создание и импорт вашего репозитория займет несколько секунд.
    4. Как только вы увидите сообщение "Репозиторий успешно импортирован", нажмите Продолжить.

    Инициализация вашего проекта dbt и начало разработки

    Теперь, когда у вас настроен репозиторий, вы можете инициализировать ваш проект и начать разработку в dbt Cloud:

    1. Нажмите Start developing in the IDE. Это может занять несколько минут, так как ваш проект впервые запускается, устанавливается соединение с git, клонируется ваш репозиторий и тестируется соединение с хранилищем.
    2. Над деревом файлов слева нажмите Initialize dbt project. Это создаст структуру папок с примерами моделей.
    3. Сделайте ваш первый коммит, нажав Commit and sync. Используйте сообщение коммита initial commit и нажмите Commit. Это создаст первый коммит в вашем управляемом репозитории и позволит вам открыть ветку, в которой вы можете добавлять новый код dbt.
    4. Теперь вы можете напрямую выполнять запросы к данным из вашего хранилища и выполнять dbt run. Вы можете попробовать это сейчас:
      • Нажмите + Create new file, добавьте этот запрос в новый файл и нажмите Save as, чтобы сохранить новый файл:
        select * from jaffle_shop.customers
      • В командной строке внизу введите dbt run и нажмите Enter. Вы должны увидеть сообщение dbt run succeeded.

    Создание вашей первой модели

    У вас есть два варианта работы с файлами в dbt Cloud IDE:

    • Создать новую ветку (рекомендуется) — Создайте новую ветку, чтобы редактировать и фиксировать ваши изменения. Перейдите в Version Control на левой боковой панели и нажмите Create branch.
    • Редактировать в защищенной основной ветке — Если вы предпочитаете редактировать, форматировать или проверять файлы и выполнять команды dbt непосредственно в вашей основной ветке git. dbt Cloud IDE предотвращает коммиты в защищенную ветку, поэтому вам будет предложено зафиксировать ваши изменения в новой ветке.

    Назовите новую ветку add-customers-model.

    1. Нажмите на ... рядом с директорией models, затем выберите Create file.
    2. Назовите файл customers.sql, затем нажмите Create.
    3. Скопируйте следующий запрос в файл и нажмите Save.
    with customers as (

    select
    id as customer_id,
    first_name,
    last_name

    from jaffle_shop.customers

    ),

    orders as (

    select
    id as order_id,
    user_id as customer_id,
    order_date,
    status

    from jaffle_shop.orders

    ),

    customer_orders as (

    select
    customer_id,

    min(order_date) as first_order_date,
    max(order_date) as most_recent_order_date,
    count(order_id) as number_of_orders

    from orders

    group by 1

    ),

    final as (

    select
    customers.customer_id,
    customers.first_name,
    customers.last_name,
    customer_orders.first_order_date,
    customer_orders.most_recent_order_date,
    coalesce(customer_orders.number_of_orders, 0) as number_of_orders

    from customers

    left join customer_orders using (customer_id)

    )

    select * from final
    1. Введите dbt run в командной строке внизу экрана. Вы должны получить успешное выполнение и увидеть три модели.

    Позже вы сможете подключить ваши инструменты бизнес-аналитики (BI) к этим представлениям и таблицам, чтобы они читали только очищенные данные, а не сырые данные в вашем инструменте BI.

    Часто задаваемые вопросы

    Как увидеть SQL, который выполняет dbt?
    Как dbt выбирает, в какой схеме строить мои модели?
    Нужно ли создавать целевую схему перед запуском dbt?
    Если я перезапущу dbt, будет ли простой, пока модели перестраиваются?
    Что произойдет, если в моем SQL-запросе ошибка или я получу ошибку базы данных?

    Изменение способа материализации вашей модели

    Одной из самых мощных функций dbt является возможность изменять способ материализации модели в вашем хранилище данных, просто изменяя значение конфигурации. Вы можете переключаться между таблицами и представлениями, изменяя ключевое слово, вместо того чтобы писать язык определения данных (DDL) для выполнения этого за кулисами.

    По умолчанию все создается как представление. Вы можете переопределить это на уровне директории, чтобы все в этой директории материализовалось по-другому.

    1. Отредактируйте ваш файл dbt_project.yml.

      • Обновите имя вашего проекта на:

        dbt_project.yml
        name: 'jaffle_shop'
      • Настройте jaffle_shop так, чтобы все в нем материализовалось как таблица; и настройте example так, чтобы все в нем материализовалось как представление. Обновите блок конфигурации models следующим образом:

        dbt_project.yml
        models:
        jaffle_shop:
        +materialized: table
        example:
        +materialized: view
      • Нажмите Сохранить.

    2. Введите команду dbt run. Ваша модель customers теперь должна быть построена как таблица!

      к сведению

      Для этого dbt сначала должен был выполнить оператор drop view (или API вызов на BigQuery), затем оператор create table as.

    3. Отредактируйте models/customers.sql, чтобы переопределить dbt_project.yml только для модели customers, добавив следующий фрагмент в начало, и нажмите Сохранить:

      models/customers.sql
      {{
      config(
      materialized='view'
      )
      }}

      with customers as (

      select
      id as customer_id
      ...

      )

    4. Введите команду dbt run. Ваша модель customers теперь должна быть построена как представление.

      • Пользователям BigQuery необходимо выполнить dbt run --full-refresh вместо dbt run, чтобы полностью применить изменения материализации.
    5. Введите команду dbt run --full-refresh, чтобы изменения вступили в силу в вашем хранилище данных.

    Часто задаваемые вопросы

    Какие материализации доступны в dbt?
    Какую материализацию использовать для моей модели?
    Какие существуют конфигурации моделей?

    Удаление примерных моделей

    Теперь вы можете удалить файлы, которые dbt создал при инициализации проекта:

    1. Удалите директорию models/example/.

    2. Удалите ключ example: из вашего файла dbt_project.yml, а также любые конфигурации, которые перечислены под ним.

      dbt_project.yml
      # до
      models:
      jaffle_shop:
      +materialized: table
      example:
      +materialized: view
      dbt_project.yml
      # после
      models:
      jaffle_shop:
      +materialized: table
    3. Сохраните изменения.

    Часто задаваемые вопросы

    Как удалить удаленные модели из моего хранилища данных?
    Я получил сообщение об ошибке "неиспользуемые конфигурации модели", что это значит?

    Построение моделей на основе других моделей

    Как лучшая практика в SQL, следует разделять логику, которая очищает ваши данные, от логики, которая трансформирует ваши данные. Вы уже начали делать это в существующем запросе, используя общие табличные выражения (CTE).

    Теперь вы можете поэкспериментировать, разделив логику на отдельные модели и используя функцию ref для построения моделей на основе других моделей:

    Граф, который мы хотим для нашего проекта dbtГраф, который мы хотим для нашего проекта dbt
    1. Создайте новый SQL файл, models/stg_customers.sql, с SQL из CTE customers в нашем исходном запросе.

    2. Создайте второй новый SQL файл, models/stg_orders.sql, с SQL из CTE orders в нашем исходном запросе.

      models/stg_customers.sql
      select
      id as customer_id,
      first_name,
      last_name

      from jaffle_shop.customers
      models/stg_orders.sql
      select
      id as order_id,
      user_id as customer_id,
      order_date,
      status

      from jaffle_shop.orders
    3. Отредактируйте SQL в вашем файле models/customers.sql следующим образом:

      models/customers.sql
      with customers as (

      select * from {{ ref('stg_customers') }}

      ),

      orders as (

      select * from {{ ref('stg_orders') }}

      ),

      customer_orders as (

      select
      customer_id,

      min(order_date) as first_order_date,
      max(order_date) as most_recent_order_date,
      count(order_id) as number_of_orders

      from orders

      group by 1

      ),

      final as (

      select
      customers.customer_id,
      customers.first_name,
      customers.last_name,
      customer_orders.first_order_date,
      customer_orders.most_recent_order_date,
      coalesce(customer_orders.number_of_orders, 0) as number_of_orders

      from customers

      left join customer_orders using (customer_id)

      )

      select * from final

    4. Выполните dbt run.

      На этот раз, когда вы выполнили dbt run, были созданы отдельные представления/таблицы для stg_customers, stg_orders и customers. dbt определил порядок выполнения этих моделей. Поскольку customers зависит от stg_customers и stg_orders, dbt строит customers последним. Вам не нужно явно определять эти зависимости.

    Часто задаваемые вопросы

    Как запустить одну модель за раз?
    Должны ли имена ресурсов, используемых в ref, быть уникальными?
    Как я создаю больше моделей, как мне организовать мой проект? Как мне назвать мои модели?

    Добавьте тесты к вашим моделям

    Добавление тестов в проект помогает убедиться, что ваши модели работают правильно.

    Чтобы добавить тесты в ваш проект:

    1. Создайте новый YAML-файл в директории models, назвав его models/schema.yml.

    2. Добавьте в файл следующее содержимое:

      models/schema.yml
      version: 2

      models:
      - name: customers
      columns:
      - name: customer_id
      tests:
      - unique
      - not_null

      - name: stg_customers
      columns:
      - name: customer_id
      tests:
      - unique
      - not_null

      - name: stg_orders
      columns:
      - name: order_id
      tests:
      - unique
      - not_null
      - name: status
      tests:
      - accepted_values:
      values: ['placed', 'shipped', 'completed', 'return_pending', 'returned']
      - name: customer_id
      tests:
      - not_null
      - relationships:
      to: ref('stg_customers')
      field: customer_id

    3. Запустите dbt test и убедитесь, что все ваши тесты прошли успешно.

    Когда вы запускаете dbt test, dbt проходит по вашим YAML-файлам и создает запрос для каждого теста. Каждый запрос вернет количество записей, которые не прошли тест. Если это число равно 0, то тест считается успешным.

    Часто задаваемые вопросы

    Какие тесты доступны для использования в dbt? Могу ли я добавить свои собственные тесты?
    Как протестировать одну модель за раз?
    Один из моих тестов не прошел, как я могу его отладить?
    Должен ли мой файл с тестами называться `schema.yml`?
    Почему файлы yml для моделей и источников всегда начинаются с `version: 2`?
    Какие тесты следует добавить в мой проект?
    Когда следует запускать тесты?

    Документируйте ваши модели

    Добавление документации в ваш проект позволяет подробно описывать ваши модели и делиться этой информацией с вашей командой. Здесь мы добавим базовую документацию в наш проект.

    1. Обновите ваш файл models/schema.yml, чтобы включить в него некоторые описания, как показано ниже.

      models/schema.yml
      version: 2

      models:
      - name: customers
      description: Одна запись на каждого клиента
      columns:
      - name: customer_id
      description: Первичный ключ
      tests:
      - unique
      - not_null
      - name: first_order_date
      description: NULL, если клиент еще не сделал заказ.

      - name: stg_customers
      description: Эта модель очищает данные о клиентах
      columns:
      - name: customer_id
      description: Первичный ключ
      tests:
      - unique
      - not_null

      - name: stg_orders
      description: Эта модель очищает данные о заказах
      columns:
      - name: order_id
      description: Первичный ключ
      tests:
      - unique
      - not_null
      - name: status
      tests:
      - accepted_values:
      values: ['placed', 'shipped', 'completed', 'return_pending', 'returned']
      - name: customer_id
      tests:
      - not_null
      - relationships:
      to: ref('stg_customers')
      field: customer_id
    2. Запустите dbt docs generate, чтобы сгенерировать документацию для вашего проекта. dbt анализирует ваш проект и ваш склад данных, чтобы создать файл с подробной документацией о вашем проекте.

    1. Нажмите на значок книги в интерфейсе Develop, чтобы открыть документацию в новой вкладке.

    Часто задаваемые вопросы

    Как писать развернутые объяснения в описаниях?
    Как получить доступ к документации в dbt Explorer?

    Зафиксируйте ваши изменения

    Теперь, когда вы создали модель клиента, вам нужно зафиксировать изменения, которые вы внесли в проект, чтобы репозиторий содержал ваш последний код.

    Если вы редактировали непосредственно в защищенной основной ветке:

    1. Нажмите кнопку Commit and sync git. Это действие подготовит ваши изменения для фиксации.
    2. Появится модальное окно с заголовком Commit to a new branch.
    3. В модальном окне назовите вашу новую ветку add-customers-model. Эта ветка будет ответвлением от вашей основной ветки с вашими новыми изменениями.
    4. Добавьте сообщение о фиксации, например, "Add customers model, tests, docs" и зафиксируйте ваши изменения.
    5. Нажмите Merge this branch to main, чтобы добавить эти изменения в основную ветку вашего репозитория.

    Если вы создали новую ветку перед редактированием:

    1. Поскольку вы уже ответвились от основной защищенной ветки, перейдите в Version Control слева.
    2. Нажмите Commit and sync, чтобы добавить сообщение.
    3. Добавьте сообщение о фиксации, например, "Add customers model, tests, docs."
    4. Нажмите Merge this branch to main, чтобы добавить эти изменения в основную ветку вашего репозитория.

    Разверните dbt

    Используйте Планировщик dbt Cloud, чтобы уверенно развернуть ваши производственные задания и встроить наблюдаемость в ваши процессы. Вы научитесь создавать среду развертывания и запускать задание в следующих шагах.

    Создайте среду развертывания

    1. В верхнем левом углу выберите Deploy, затем нажмите Environments.
    2. Нажмите Create Environment.
    3. В поле Name напишите название вашей среды развертывания. Например, "Production."
    4. В поле dbt Version выберите последнюю версию из выпадающего списка.
    5. В разделе Deployment connection введите название набора данных, который вы хотите использовать в качестве целевого, например, "Analytics". Это позволит dbt строить и работать с этим набором данных. Для некоторых хранилищ данных целевой набор данных может называться "схемой".
    6. Нажмите Save.

    Создайте и запустите задание

    Задания — это набор команд dbt, которые вы хотите запускать по расписанию. Например, dbt build.

    По мере того как бизнес jaffle_shop привлекает больше клиентов, и эти клиенты создают больше заказов, вы увидите больше записей, добавленных в ваши исходные данные. Поскольку вы материализовали модель customers как таблицу, вам нужно будет периодически перестраивать вашу таблицу, чтобы данные оставались актуальными. Это обновление произойдет, когда вы запустите задание.

    1. После создания вашей среды развертывания вы должны быть перенаправлены на страницу новой среды. Если нет, выберите Deploy в верхнем левом углу, затем нажмите Jobs.
    2. Нажмите Create one и укажите имя, например, "Production run", и свяжите с только что созданной средой.
    3. Прокрутите вниз до раздела Execution Settings.
    4. В разделе Commands добавьте эту команду как часть вашего задания, если вы ее не видите:
      • dbt build
    5. Выберите флажок Generate docs on run, чтобы автоматически генерировать обновленную документацию проекта каждый раз, когда выполняется ваше задание.
    6. Для этого упражнения не устанавливайте расписание для выполнения вашего проекта — хотя проект вашей организации должен выполняться регулярно, нет необходимости запускать этот пример проекта по расписанию. Планирование задания иногда называют развертыванием проекта.
    7. Выберите Save, затем нажмите Run now, чтобы запустить ваше задание.
    8. Нажмите на выполнение и наблюдайте за его прогрессом в разделе "Run history."
    9. После завершения выполнения нажмите View Documentation, чтобы увидеть документацию вашего проекта.

    Поздравляем 🎉! Вы только что развернули ваш первый проект dbt!

    Часто задаваемые вопросы

    Что произойдет, если один из моих запусков завершится неудачей?
    0